Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-479134

RESUMO

SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allowed for rapid movement of existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites on the spike protein. TMPRSS2 has a protease domain capable of cleaving the two cut sites; therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-424413

RESUMO

The SARS-CoV-2 pandemic has prompted researchers to pivot their efforts to finding antiviral compounds and vaccines. In this study, we focused on the human host cell transmembrane protease serine 2 (TMPRSS2), which plays an important role in the viral life cycle by cleaving the spike protein to initiate membrane fusion. TMPRSS2 is an attractive target and has received attention for the development of drugs against SARS and MERS. Starting with comparative structural modeling and binding model analysis, we developed an efficient pharmacophore-based approach and applied a large-scale in silico database screening for small molecule inhibitors against TMPRSS2. The hits were evaluated in the TMPRSS2 biochemical assay and the SARS-CoV-2 pseudotyped particle (PP) entry assay. A number of novel inhibitors were identified, providing starting points for further development of drug candidates for the treatment of COVID-19.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-255877

RESUMO

Drug repurposing is a rapid approach to identifying therapeutics for the treatment of emerging infectious diseases such as COVID-19. To address the urgent need for treatment options, we carried out a quantitative high-throughput screen using a SARS-CoV-2 cytopathic assay with a compound collection of 8,810 approved and investigational drugs, mechanism-based bioactive compounds, and natural products. Three hundred and nineteen compounds with anti-SARS-CoV-2 activities were identified and confirmed, including 91 approved drug and 49 investigational drugs. Among these confirmed compounds, the anti-SARS-CoV-2 activities of 230 compounds, including 38 approved drugs, have not been previously reported. Chlorprothixene, methotrimeprazine, and piperacetazine were the three most potent FDA approved drugs with anti-SARS-CoV-2 activities. These three compounds have not been previously reported to have anti-SARS-CoV-2 activities, although their antiviral activities against SARS-CoV and Ebola virus have been reported. These results demonstrate that this comprehensive data set of drug repurposing screen for SARS-CoV-2 is useful for drug repurposing efforts including design of new drug combinations for clinical trials.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-207019

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emphasized the urgency to develop effective therapeutics. Drug repurposing screening is regarded as one of the most practical and rapid approaches for the discovery of such therapeutics. The 3C like protease (3CLpro), or main protease (Mpro) of SARS-CoV-2 is a valid drug target as it is a specific viral enzyme and plays an essential role in viral replication. We performed a quantitative high throughput screening (qHTS) of 10,755 compounds consisting of approved and investigational drugs, and bioactive compounds using a SARS-CoV-2 3CLpro assay. Twenty-three small molecule inhibitors of SARS-CoV-2 3CLpro have been identified with IC50s ranging from 0.26 to 28.85 M. Walrycin B (IC50 = 0.26 {micro}M), Hydroxocobalamin (IC50 = 3.29 {micro}M), Suramin sodium (IC50 = 6.5 {micro}M), Z-DEVD-FMK (IC50 = 6.81 {micro}M), LLL-12 (IC50 = 9.84 {micro}M), and Z-FA-FMK (IC50 = 11.39 {micro}M) are the most potent 3CLpro inhibitors. The activities of anti-SARS-CoV-2 viral infection was confirmed in 7 of 23 compounds using a SARS-CoV-2 cytopathic effect assay. The results demonstrated a set of SARS-CoV-2 3CLpro inhibitors that may have potential for further clinical evaluation as part of drug combination therapies to treating COVID-19 patients, and as starting points for chemistry optimization for new drug development.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-197988

RESUMO

While vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work should contribute to the development of effective treatments against the initial stage of viral infection, thus reducing viral burden in COVID-19 patients. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=109 SRC="FIGDIR/small/197988v2_ufig1.gif" ALT="Figure 1"> View larger version (37K): org.highwire.dtl.DTLVardef@d60124org.highwire.dtl.DTLVardef@1e5152dorg.highwire.dtl.DTLVardef@d16655org.highwire.dtl.DTLVardef@1957bcc_HPS_FORMAT_FIGEXP M_FIG C_FIG

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-178889

RESUMO

COVID-19 is undoubtedly the most impactful viral disease of the current century, afflicting millions worldwide. As yet, there is not an approved vaccine, as well as limited options from existing drugs for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Overall, we identified 16 synergistic and 8 antagonistic combinations, 4 of which were both synergistic and antagonistic in a dose-dependent manner. Among the 16 synergistic cases, combinations of nitazoxanide with three other compounds (remdesivir, amodiaquine and umifenovir) were the most notable, all exhibiting significant synergy against SARS-CoV-2. The combination of nitazoxanide, an FDA-approved drug, and remdesivir, FDA emergency use authorization for the treatment of COVID-19, demonstrate a strong synergistic interaction. Notably, the combination of remdesivir and hydroxychloroquine demonstrated strong antagonism. Overall, our results emphasize the importance of both drug repurposing and preclinical testing of drug combinations for potential therapeutic use against SARS-CoV-2 infections.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-154708

RESUMO

The COVID-19 pandemic, caused by SARS-CoV-2, is a pressing public health emergency garnering rapid response from scientists across the globe. Host cell invasion is initiated through direct binding of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Disrupting the spike-ACE2 interaction is a potential therapeutic target for treating COVID-19. We have developed a proximity-based AlphaLISA assay to measure binding of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) to ACE2. Utilizing this assay platform, a drug-repurposing screen against 3,384 small molecule drugs and pre-clinical compounds was performed, yielding 25 high-quality, small-molecule hits that can be evaluated in cell-based models. This established AlphaLISA RBD-ACE2 platform can facilitate evaluation of biologics or small molecules that can perturb this essential viral-host interaction to further the development of interventions to address the global health pandemic.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-135046

RESUMO

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-091520

RESUMO

SARS-CoV-2 is a new type of coronavirus capable of rapid transmission and causing severe clinical symptoms; much of which has unknown biological etiology. It has prompted researchers to rapidly mobilize their efforts towards identifying and developing anti-viral therapeutics and vaccines. Discovering and understanding the virus’ pathways of infection, host-protein interactions, and cytopathic effects will greatly aid in the design of new therapeutics to treat COVID-19. While it is known that chloroquine and hydroxychloroquine, extensively explored as clinical agents for COVID-19, have multiple cellular effects including inhibiting autophagy, there are also dose-limiting toxicities in patients that make clearly establishing their potential mechanisms-of-action problematic. Therefore, we evaluated a range of other autophagy modulators to identify an alternative autophagy-based drug repurposing opportunity. In this work, we found that 6 of these compounds blocked the cytopathic effect of SARS-CoV-2 in Vero-E6 cells with EC50 values ranging from 2.0 to 13 µM and selectivity indices ranging from 1.5 to >10-fold. Immunofluorescence staining for LC3B and LysoTracker dye staining assays in several cell lines indicated their potency and efficacy for inhibiting autophagy correlated with the measurements in the SARS-CoV-2 cytopathic effect assay. Our data suggest that autophagy pathways could be targeted to combat SARS-CoV-2 infections and become an important component of drug combination therapies to improve the treatment outcomes for COVID-19.One Sentence Summary Blocking SARS-CoV-2 cytopathic effects with selective autophagy inhibitors underlying the clinical benefits of chloroquine and hydroxychloroquine.Competing Interest StatementThe authors have declared no competing interest.View Full Text

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...